Measuring and modelling the energy consumption of multi-threaded, multi-core embedded software

Steve Kerrison, University of Bristol
steve.kerrison@bristol.ac.uk

Supervisor: Dr. Kerstin Eder
kerstin.eder@bristol.ac.uk

ICT-Energy Community Workshop, BSC
In this presentation

- Motivation behind my Thesis.
- Modelling a modern, embedded microprocessor.
- Demonstrating communication costs.
- Ongoing and future work.
Motivation

• Embedded systems are everywhere.
• Becoming more complex with every generation.
• Hardware and software increases in complexity.
Motivation

• Every generation of hardware strives for better energy efficiency.

Kepler – first introduced in desktop and notebook systems, and later brought to workstations and supercomputers – is the world’s fastest and most energy-efficient GPU architecture.

NVIDIA K1 UK press release, CES January 2014

• What about software?
Motivation

• Helping software engineers understand the energy cost of the code that they write.

• Encouraging a **better understanding** of the **behaviour** and **exploitable features** of an embedded processor and the **system** around it.
In this presentation

• Motivation behind my Thesis.
• **Modelling a modern, embedded microprocessor.**
• Demonstrating communication costs.
• Ongoing and future work.
XMOS XS1-L

- Locks
- Ports
- Synchronisers
- Timers
- Channels
- Switch
- X-Links

XS1-L die

- Thread registers
- Pipeline
- Memory
The set up...
ISA Characterization

- Idle power
 ~95mW
- Cheapest instructions
 ~110mW
- Most expensive
 ~200mW
- Worst case
 ~250mW
- Threading level
 1.5x power increase, 4x performance increase.

Model

\[E = V_{\text{core}} I_{\text{leak}} + \left(C_{\text{idle}} + \frac{X}{4} C_{\text{instr}} S_X \right) V_{\text{core}}^2 F \]

\[X = \min(N_{\text{threads}}, 4) \]

- Express frequency, voltage, thread activity, instruction costs and time consumption.
Preliminary results

Model accuracy
Normalised against measured energy

Test

- XMOS mixer
- Sha2
- Scalar add
- 6x basic mix
- 4x basic mix
- Matrix multiply
- LZWK
- 1xDhrystone
- 2xDhrystone
- Array multiply
- Idle

Accuracy

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
In this presentation

• Motivation behind my Thesis.
• Modelling a modern, embedded microprocessor.
• Demonstrating communication costs.
• Ongoing and future work.
Swallow

- 16 cores
- 8 chips
- < 24 watts
- 8 threads per core
- Low-latency network
- ISA provides network access
Comms & peripheral hardware

2-tile XMOS network with USB

16-tile XMOS board (UoB project Swallow)

Modelling components and interconnects.
Biquad filter

• 7-stage biquad filter implemented in various configurations on Swallow.
 – 7 threads on 1 core.
 – 7 threads across two cores.
 • Good spatial locality.
 • Bad spatial locality.
 – 7 threads across 7 cores.
Comms example: Biquad filter

- Active cores, latency, contention and under/over-allocation all affect total energy.
- Power, energy & time a valuable triple.
Communication model

- Simpler than core model.
 - Just model the behaviour based on the amount of data carried.
- Several components can be modelled in this way:
 - Switches
 - Links
 - Peripherals

\[E_{com} = \left(V_{com} I_{leak} + N F_{com} V_{com}^2 \right) T \]
Simulation

```
pigz -dc fir-20140416.axe.trace.gz | ./xmtracem2.py --xn swallow-1x1.xn -m model-20140307.pkl
```

Model stats
==========
Base power: 90.44e-03 W
Time (clocks/wall): 1e06 clk / 3.11e-03 S

Core 0:
- Energy (static | dynamic | comms | total):
 - 0.28e-03 J | 0.28e-03 J | 0.00e-03 J | 0.55e-03 J
- Power (static | dynamic | comms | total):
 - 88.65e-03 W | 88.71e-03 W | 0.00e-03 W | 177.36e-03 W

Core 1:
- Energy (static | dynamic | comms | total):
 - 0.18e-03 J | 0.14e-03 J | 0.00e-03 J | 0.33e-03 J
- Power (static | dynamic | comms | total):
 - 59.36e-03 W | 45.80e-03 W | 0.00e-03 W | 105.16e-03 W

Steve Kerrison, ICT-Energy Workshop, BSC
In this presentation

• Motivation behind my Thesis.
• Modelling a modern, embedded microprocessor.
• Demonstrating communication costs.
• Ongoing and future work.
Comms & peripheral hardware

2-tile XMOS network with USB

16-tile XMOS board (UoB project Swallow)

Modelling components and interconnects.
Ongoing and future work

- Tying together with *Dynamic Voltage & Frequency Scaling*.
- Applying similar techniques to other architectures.
 - ARM, MIPS.
- Modelling peripherals.
- Higher-level modelling, not simulation based.
The research presented in this paper has received funding from the EU FP7 framework agreement 318337 – ENTRA, Whole-Systems Energy Transparency.

http://entraproject.eu

Thank you

Steve Kerrison, University of Bristol
steve.kerrison@bristol.ac.uk

Supervisor: Dr. Kerstin Eder
kerstin.eder@bristol.ac.uk

ICT-Energy Community Workshop, BSC