Single Electron Devices and Circuits

M. F. Gonzalez-Zalba1, S. Kaxiras2, R.D. Levine3, F. Remacle4, S. Rogge5, M. Sanquer6

1Hitachi Cambridge Laboratory, Cambridge, UK
2Division of Computer Systems, Uppsala University
3The Fritz Haber Research Centre for Molecular Dynamics, Hebrew University Jerusalem
4Département de Chimie, University of Liège
5Centre for Quantum Computation and Communication Technology, UNSW
6SPSMS, UMR-E CEA/UJF Grenoble

ICT-Energy 17/08/2016
Contents

1. Transistor downscaling issues
2. Single Electronics
 2.1 Single Electron Devices
 2.2 Single Electron Circuits
3. Conclusions
The MOSFET: workhorse of the ME industry

Microprocessor

5.5 billion transistors
18-core Xeon Haswell-EP

Flash memory

256 billion transistors
weighting 0.5 g
Downscaling drove progress

Improving computers for 50 years

f,V scaling stopped

Moore’s Law (any time now …)

Power Wall

Multicore era
Downscaling will not work forever

• Loss of control over the channel electrostatics – Short Channel effects

Ferain et al, Nature 479 310

• Static vs Dynamic Power

E. Pop, 2010
Gate-based RF readout for QIP

Single Electronics
Coulomb Blockade

SET Conditions

\[R_T > 25.6k\Omega \]
\[E_c = \frac{e^2}{C_\Sigma} > k_B T \]

Energy of the system with N electron

\[
U(N, V_g) = \int_0^{-Ne} V(Q)dQ = \frac{N^2 e^2}{2C_\Sigma} - \frac{NeC_gV_g}{C_\Sigma}
\]

Energy difference between N and N-1 electrons

\[
\mu(N, V_g) = U(N, V_g) - U(N - 1, V_g) = \frac{e^2}{C_\Sigma} (N - 1/2) - \frac{eC_gV_g}{C_\Sigma}
\]
Single-Electron Functionality

Coulomb Blockade

\[R_T > 25.6k\Omega \]

\[E_C = \frac{e^2}{C_\Sigma} > k_BT \]

SET Conditions

SET

\[\text{SET Conditions} \]

\[R_T > 25.6k\Omega \]

\[E_C = \frac{e^2}{C_\Sigma} > k_BT \]
Single-Electron Functionality

Coulomb Blockade

SET Conditions

\[R_T > 25.6k\Omega \]

\[E_c = \frac{e^2}{C_\Sigma} > k_B T \]
Switching Characteristics - Subthreshold Slope

MOSFET

\[SS = \ln(10) \frac{kT}{q} \left(1 + \frac{C_d}{C_{OX}}\right) > 60 \text{ mV/dec} \]

Single Electron Transistor/Single Atom Transistor

\[SS_{SET} = 1.25 \cdot \ln(10) \frac{kT}{aq} > 75 \text{ mV/dec} \]

\[SS_{SAT} = \ln(10) \frac{kT}{aq} > 60 \text{ mV/dec} \]
Why do we care about single-electron devices?

Exploit the non monotonic transfer characteristics of the devices
New Functionalities – Complex Logic at the Device Level

Devices Explored
- Single Electron Transistor (SET)
- Single Atom Transistor (SAT)
- Magnetic Single Electron Transistor (MSET)
Single-Electron Devices based on CMOS transistors
3D Fully-Depleted Silicon-on-insulator FET

- 300mm SOI wafers
- Gate stack
- Poly-Si
- Spacer
- BOX
- Si-Back Gate
- $t=9-11\,\text{nm}$

$w>10\,\text{nm}$ $L>10\,\text{nm}$
Great Transistors at Room Temperature

W7 (Spacer 5nm, Channel doping 5^{17}) $W=10-15nm$

Good electrostatic control in Trigate Nanowires

$\text{DIBL} \sim 100 \text{ mV/V at } L_G=15\text{nm and } \text{SS}_{\text{SAT}} \sim 70\text{mV/dec at } L_G=15\text{nm}$

Comparable to the SoA optimized NWFET: DIBL=80mV/V for Lg=10nm
At Low Temperature is a Single Electron Transistor

DC @ 30mK \(w=10 \text{ nm} \) \(L=64 \text{ nm} \)

A. C. Betz et al.
App. Phys. Lett 104 043106

Single- Electron Transistor

- Confinement along the transport direction:
 - Nitride spacer,
 - Surface roughness
 - Remote charges at the gate stack
- Typical charging energies 20 meV \(- T =20K \)
- First electron \(~0.52\pm0.01 \text{ V} \) (Good reproducibility)
Or a Single Atom Transistor

Single Boron Transistor
- Charging energy 30-50 meV – T =30-50 K
- Random distribution of dopants
- Spin Filter

Van der Heijden et al. Nano Letters 14 1402 (2014)
And can even work at room temperature

SET working at room temperature
- Ω-gate transistor 3.4 nm diameter, 10 nm gate
- Charging energy 230 meV due to surface roughness
- Difficult to produce in large scale: ~10% CBO

Lavieville et al. Nano Letters 15 2958
3. SE Circuits and Architectures

![Circuit Diagram]

- **a)** Circuit with `OR` and `NAND`
- **b)** Circuit with `AND` and `NOR`
SET-FET hybrid circuits for amplification

- Typical SET current ~1nA
- Amplification by MOS: 10^6
- Output Impedance 1k, output current 1 mA

Reconfigurable Logic using Magnetic Transistors

Ferromagnetic Gate Electrode: GaMnAs gate

Complementary Functionality

Reconfigurable Logic using Magnetic Transistors

Magnetic SETs Circuits

- N and P type on same device
- NAND to NOR reconfigurability done at single device level
- OR-NAND, AND-NOR done at circuit level
- Need to find large magnetic anisotropy material – CoPt ~ 60mV

Logic Circuits with Single Electron Devices

1-Bit Full Adder

• Using 1 SET + 1 SAT + 2 CMOS (vs 28 CMOS)
• Implement Logic at the hardware level- Ternary
• CMOS compatible
• SET decodes SAT to binary
• 2 CMOS provide concatenation for the carry

Mol et al. PNAS 108 13969
Dual Mode Architectures

Idea: Why not use both encodings at the same time on the same circuits

Binary encoding: “precise” version, full cost in computing and storage
Multivalued encoding: “approximate” version, reduced cost in computing and storage

Further: use both encodings in the same data word
a few digits (most significant) binary
the rest (least significant) multivalued

Sjalander et al. WAPCO 2016
Conclusion

1. Single Electronics:
 a. Single Electron Device present non-monotonic I-V characteristics that allow for implementation of complex operations at the device level.

2. Device:
 a. FD-SOI is suitable for single-electron device implementation up to room temperature
 b. SET reliable threshold voltage at low temperature but reproducibility problems at room temperature

3. Circuits and Architectures:
 a. Hybrid SET-FET circuits for permit large single-electron fanout
 b. Complex logic implementation at the device level reduces circuit complexity and power consumption
 c. Dual-mode architecture for approximate computing – Quaternary SE devices
Hitachi Cambridge Laboratory
David Williams
Andreas Betz
Lisa Ibberson

University of New South Wales
Sven Rogge
Joost Van der Heijden

CEA-LETI
Maud Vinet
Romain Wacquez
Marc Sanquer
Xavier Jehl
Louis Huttin
Siylvain Barraud

University of Liege
Francoise Remacle
Mike Klymenko

Hebrew University of Jerusalem
Raphael Levine
Michael Klein

University of Uppsala
Stefanos Kaxiras
Magnus Sjlander
Thanks for your attention. Questions?

www.tolop.eu
M. F. Gonzalez-Zalba: mg507@cam.ac.uk